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Abstract. Modeling of time resolved experiments on zero-dimensional quantum dots requires
a conceptually different approach than for higher dimensional semiconductors. A description via
master equations for the micro-states is necessary since quantum dots behave as independent
objects. The impact of finite inter-level relaxation time is included in our model. Description
via conventional rate equations for population probabilities averaged over the dot ensemble is
inadequate. Two different time resolved luminescence experiments for quantum dot systems with
fast and slow inter-level relaxation, respectively, are modeled to provide typical applications of
our approach.

The energy relaxation and recombination of charge carriers in three-, two- and one-
dimensional semiconductors has been investigated to great extent, e.g. Ref [1-3]. Com-
mon to materials with these dimensionalities (bulk, quantum wells, quantum wires) is,
that their properties can be adequately described by continuous charge carrier densi-
ties n and p for electrons and holes, respectively. The probabilities of events in the
charge carrier gas are essentially dependent on the product of such densities, e.g. np
for inter-band recombination and n2p or np 2 for the Auger effect.

With the advent of semiconductor quantum dots (QDs) fabricated by self-organized
growth [4-6] zero-dimensional electronic systems with well controlled properties and
area densities of 109 to 1011 cm- 2 became available. Such QD layers represent systems
qualitatively different from any higher dimensional semiconductor structure. The
carriers in individual QDs populate discrete levels and are described by integer numbers.
The probability of events does not depend on the average carrier density but on the
condition whether the event partners are simultaneously present in a particular QD.
Despite this rather obvious fact, up to now only conventional rate equations (CRE) for
the ensemble averaged level occupations, inspired by the description of bulk material
or quantum wells, have been used to model carrier dynamics in QD ensembles [7-10].
The tremendous experimental interest in the carrier dynamics in quantum dots [7-16]
is due to the concern about the general usefulness of QDs for high speed operation of
devices, like lasers or light emitting diodes, because capture and inter-level relaxation
processes might be slow.

In this work we will show that CRE fail for the description of QD systems. A
conceptually fundamentally different model is presented, namely master equations for
all micro-states (MEM) of the QD. A micro-state of the QD represents one particular
occupation with carriers; the entirety of all micro-states represents the phase space.
Such an approach has been used for the description of the Auger process for the spin-
degenerate ground state of CdS micro-crystals in a glass matrix [17] and spin dynamics
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Fig 1. Schematic representation of the conventional rate equation model (CRE) and the master
equation for the micro-states (MEM) for a two-level system.

of the ground state of (two-dimensional) excitons [18], both involving four micro-states.
However, to the best of our knowledge, multi-level systems and inter-level relaxation
have not been described using micro-states. An alternative approach are Monte-Carlo
simulations [19] which are harder to implement, are much more time consuming and do
not yield quasi analytical results. Using the MEM approach we will model actual time-
resolved experiments on two fundament ally different QD systems: Small InAs/GaAs
pyramids [6, 20] and strain induced quantum dots [10, 21], with fast and slow inter-level
relaxation time constants, respectively.

In order to illustrate why CRE models fail in general to describe recombination from
layers of decoupled QDs we compare the CRE and the MEM models for a simple two-
level system. We assume two non-degenerate electron-hole pair (eh-pair) levels I1 >
and 12> which can both decay radiatively with the same time constant Tr (Fig. 1). If in
a dot level 12 > is occupied and level I1 > is empty, an inter-level relaxation process can
occur with a time constant To. In the CRE model the system is described by population
probabilities fi and f2 for the levels, respectively, taking values 0 < f < 1. The rate
equations (after preparation of an initial non-equilibrium population and switch-off of
any external excitation) are

d/V fl f2(1-fI ) (1)

dt T, TO
__ .f2 f2(1 -fl) (2)

dt T, TO

The second term in both equations is used to model the inter-level scattering and
contains a factor 1 - fi for the available empty states to describe the "Pauli blocking".
The final state population must be considered for quantum dots, while it is usually
neglected in CRE models for quantum wells [22, 23].

A correct description of the QD ensemble is achieved using all micro-states. In our
example these are dots with the two levels filled with (ni, n2) eh-pairs, i.e. (0,0) for
empty dots, (1,0) and (0,1) for dots where either the I1 > or the 12> level is filled, and
(1,1) for completely filled dots. The probabilities to find a dot with a specific micro-state
in the ensemble shall be given by woo, wlo, wol, and wil with woo+wlo+wo0 +wl I = 1.
The master equations for the possible transitions between the micro-states (Fig. 1) are

dwoo w(13 w)=-- + -(3)
dt Tr Tr

dwjo wlo w_(4)
dt Tr Tr TO
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dwo - W + I Wr l (5)
dt Tr Tr TO

dw = 2w (6)
dt Tr

The term wo1 /TO describes the inter-level relaxation. We note that "Pauli blocking" is
not explicitly introduced; implicitly it is included by not considering "overfilled" micro-
states like (2,0). The issue of how to model finite state population does not arise in the
MEM scheme.

The population probabilities fl and f2 used in the conventional rate equation ap-
proach can be expressed as f, = wlo+wll and f2 = wo0 +w11. The inter-level scattering
term in the CRE description translates into

f2.(I - )f (wol + w11)(wol +woo) (7)
TO TO

which is obviously unreasonable. The term is quadratic in wo0 and includes, due to the
ensemble averaging procedure, empty (woo) and completely filled (wI ) dots which do
not contribute to the inter-level scattering process at all.

For To = 0 (and complete initial filling, i.e. f2(t = 0) = f, (t = 0) = 1 and
wI (t = 0) = 1, respectively) the CRE model yields a non-exponential transient for the
excited state and a kink at t = Tr-fn( 2 ) in the transient of the ground state. The decay of
the excited state occurs too fast in the CRE model for To < Tr and a false value To ' Tr

will be obtained from a fit with CRE. CRE models are in principle inadequate for
the description of QDs. Their application for the determination of inter-level scattering
times from time resolved luminescence experiments can lead to wrong results.

In our theoretical model we use the following assumptions, which are valid for
strongly confined carriers: The single particle levels n = 1, 2,... of the QDs are
populated with electrons and holes; n = 1 is also referred to as ground state, n = 2 as
first excited state. The maximum number of carriers on a given level is determined by
the degeneracy g, of the level. Electrons and holes recombine radiatively between single
particle states, i.e. Coulomb correlation is neglected. However, also a representation in
the exciton picture could be chosen. The transitions are denoted by the electron and hole
levels involved, e.g. le-lh or 2e-2h. As a consequence, the lifetime of the biexciton (dot
filled with two electrons and holes in their single particle ground state, XX -+ X + -Y)
is given by Txx = Tx! 2 , Tx denoting the lifetime of a single eh-pair in the ground state.
Two-photon processes (XX -+ 2 -y) and Auger recombination are neglected. Throughout
the paper the low temperature case is treated where excited states are not thermally
populated.

The inter-level scattering is described by the time constant To for one single relaxation
process between any two non-degenerate levels. Thus the relaxation rate between micro-
states scales with the number of available initial and final states and becomes larger for
higher excited states. The transition rate of an eh-pair in an excited state into the empty
spin-degenerate ground state shall be 2 /To. If spin-conserving relaxation processes
dominate, as suggested in Ref [24] at least for moderate magnetic fields, the number
of available final states would be only one; in this case TO/ 2 must be interpreted as
the inter-level scattering time. A more detailed model than presented here including
detailed spin dynamics, also taking into account dark exciton states [24, 25], can be
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derived on the basis of our multi-level MEM concept. It will be subject to subsequent
work and needs additional experimental input on spin scattering rates in QDs.

First we predict the asymptotic decay constants (at long times after excitation) of QD
excited state luminescence transients using the MEM model for the case that the ground
state was initially filled. For TO = 0 the carriers populate always the energetically lowest
possible states. The asymptotic transient of the first excited state is then governed by
dots in the (2, 1, ... ) state. This micro-state obviously decays with the time constant
l/T(2,1) = 1/T-2 + 2/T 3 , where T2 (T

3
) denotes the recombination time constant of the

2-2 (1-1) transition. For finite values of TO, the asymptotic decay constant T2 of the
first excited state is given by eq. 8 in the MEM model:

1 1 22 for To <T, for To0T! (8)
T T'--T1 TO

A finite value of TO has only an impact on the asymptotic transient of the excited
state for TO > Tr (for CRE the lower formula is valid for all values of TO). However,
for TO/Tr ;1 the true asymptotic values are only reached for large delay times; for the
typical dynamic range 101 - 104 of time resolved luminescence experiments numerical
evaluation is needed.

The level structure of small pyramidal self-organized InAs/GaAs QDs has been
analyzed [20, 26]. The multi-phonon relaxation mechanisms present in such dots have
been discussed [27]. Here, we will analyze time resolved experiments where the hole
ground and excited state become populated. The transitions with ground state electrons
are labeled le-lh and le-2h. Both hole levels are spin-degenerate, thus 3 x 3 = 9 micro-
states have to be included in the MEM. Our model shall contain only four physical
parameters: the recombination time constants for both transitions Tle-lh and Tle-2h

(the excited state is affected by a non-radiative recombination channel [27] and is thus
expected to have the shorter time constant), the inter-level scattering time TO and the
time constant T,. describing the capture of carriers from the barrier into any level of the
QD. We use Tl/T1-lh = 0.01 to generate transients with the experimental ly observed
fast onset [15, 13]. Coulomb scattering is argued to shorten the capture process [12, 13].

Since the peaks of the two transitions overlap spectrally [20], at long delay time the
temporal behavior of the luminescence detected at the energy of the excited state is
given by that of the ground state. In Fig. 2 the measurement is shown together with
several fits. In experiments with resonant excitation of the excited state [15], the (initially
empty) ground state exhibits a rise time of 30 ps, which is a direct measurement of the
fast inter-level relaxation constant. A fit of the transient for non-resonant excitation using
TO = 30 ps yields a perfect fit of the transients for the MEM approach (TO/Tle-lh =

0.04). We note that the fit is practically identical for any value TO < 100 ps including
To = 0 ps. The decay of non-resonantly excited transients is found to be insensitive to
the inter-level relaxation constant if it is small (as is clear from eq. 8) and thus unsuited
for its determination. The (2,1) micro-sta te with a filled ground state governs the
decay of the excited state in the InAs/GaAs pyramids. Using CRE an erroneous value
of about TO = 240 ps is necessary in order to fit the experimental data for the excited
state transition. The decay of the excited level in the CRE scheme is too fast for small
values of TO; a relatively sharp bend occurs in the transient, indicated by the arrow in
Fig. 2.
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Fig 2. Experimental transients of the ground (le-lh) and exeited state (le-2h) transition in
InAsiGaAs quantum dots (symbols). Solid lines: Fit with MEM model, other lines (vertically

shifted): fits with CRE model using different values for To as given in the figure. For all transients
T-½•1h = 0.85 ns and Tke2h = 0.24 ns have been used. The arrow denotes the unrealistic sharp
bend in CRE transient for small values of To.

Time resolved experiments on strain induced dots [21] have been reported in Ref.
[10] (Fig. 3b). The electronic level structure of such dots is well described by a
two-dimensional harmonic oscillator model, exhibiting K = 5 levels for electrons andholes with degeneracies g, = 2n, n = 1,..., K. Selforganized QDs, grown by a
Stranski-Krastanov process, with similar five-level structure were reported [8]. The total
number of states is M = •x= ,= 30; the number of distinguishable micro-states is
H~n= 1 (g + 1) = 10395. Each micro-state is unambiguously described by a quintuple
(ni, n2, n3, fl4, ns), 0 _< ni <_ gi. Radiative transitions are allowed between electrons and
holes with the same quantum numbers, i.e. le-lh, 2e-2h. In the following we assume
that the excess carriers have been deposited in the barrier via a short pulse at t = 0.
The onset of the transients will be modeled with T6 = 4 ps as recently determined byup-conversion experiments using the same excitation intensity [28]. This onset is faster

than the time resolution of the streak camera experiment shown in Fig. 3b and our
simulations do not attempt to fit the onset. The saturation value of intensity from thefour lines scales like 2:3.4:5.3:7.5 and is not exactly given by the degeneracies which

would predict 2:4:6:8. We believe that this effect is caused by non-identical radiative
lifetimes ofeh-pairs on the different levels and include this fine-tuning for the quantitative
fit by using recombination time constants bee-n, which scale e 1:1.17:1.12:1.06. For
the 5e-5h transition (not measured) we assume a factor of 1.1.

For finite To the different inter-level scattering processes entering the model have
to be distinguished. We will compare two "trickle down" models: "TDA": scattering
processes are allowed to all lower levels n -e n - 1,..., 1 and "TDN": scattering
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Fig 3. Transients for five-level quantum dots and master equation model. (a) Comparison
of theoretical transients for instantaneous relaxation (To = 0) and TDA and TDN model for
TO = T1---h. (b) Experimental data and fit with TDA model for two values of the inter-level
scattering time, TO/T--1h = 1 and 2, T1l-h = 0.75ns.

processes are restricted to the next lower level n -+ n - 1. For To = 0, the carriers
are always in the energetically lowest states; thus the number of carriers describes the
micro-state unambiguously The number of micro-states is thus reduced to M + 1 = 31
including the empty dot. The transients for this case are shown in Fig. 3a. The essential
features of the experiments are already reproduced. While excited states are strongly
populated, the lower levels exhibit a plateau region because they remain completely
filled due to instantaneous carrier refill. Higher excited states exhibit increasingly faster
asymptotic decay constants compared with that of the ground state (Tie-hlh).

For finite values of TO we consider first the TDA model, where relaxation processes
into all lower levels are incorporated (Fig. 3a). The transients exhibit a significant
difference from the case TO = 0 only for TO / TIe-I h > 0.1. The main effects are intensity
from excited states remaining at larger delay times, an increase of the asymptotic decay
constants of excited states and that the plateau region does not remain flat. It exhibits a
slow decay while upper levels are still significantly filled because the refill rate decreases
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with decreasing population of all excited states. Using the parameters T-l,-Ih = 0.75 ns
and To = 0.75 ns a very good fit of the experimental data at large times (asymptotic
slopes of the ground and excited state) is obtained (Fig. 3b). Using To = 1.5 ns a better
overall fit mimicking the decrease of plateau intensities is achieved; however, the decay
of the 2e-2h transition comes out too slow.

We conclude for slow inter-level relaxation, To-/ Tie- lh 1. Therefore the asymptotic
decay of the first excited state is governed by (0,1,0,0,0) QDs.

In the TDN model, considering only relaxation processes to the next lower level,
the transients exhibit a concave bump (Fig. 3a) not observed in the experiment which
yields convex transients. Thus the TDN model seems not appropriate, at least not in
conjunction with initial complete filling of dots.

In Ref [10] the experimental data had been fitted with a CRE model and TDN
scheme; a value TO•/T•e-lh ; 0.67 was deducted. From our analysis it becomes clear
that because the inter-level scattering time is large and close to the radiative lifetime,
the CRE model was able to fit the experimental data with a reasonable value for To.

In summary we have applied a novel concept, master equations for the micro-states,
to the description of time-resolved luminescence experiments on multi-level QDs with
fast and slow inter-level relaxation. Conventional rate equation models for the ensemble
averaged population probabilities are incorrect and largely overestimate the inter-level
relaxation time constant if it is small compared to the recombination time constants.
More complicated processes than discussed in this work, like Auger recombination,
two photon processes, spin dynamics, and effects due to finite temperature (thermal
population of excited states by phonon absorption) can be included.
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